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Abstract

Contamination of drinking water sources with lead is
one of the most significant environmental and public
health problems and, consequently, highly efficient
absorption-based elimination strategies are highly
sought after. Here, a machine-driven real-time lead
adsorption behavior for a series of temperatures is
reported based on modeling of the adsorption isotherm
models. The experimental data is reproduced, followed
by the development of a novel prospective predictive
framework. Mechanism of adsorption was screened
over various parameters: concentration of adsorbent
(10-60 mg/L), pH (4-9), contact time (30—180 min),
adsorbent meal load (1-6 g/L) and temperature (100
°C, 150 °C, 200 °C) in a bid to determine their effect
on adsorption effectiveness. Three isotherm equations,
namely  Dubinin—Radushkevich  (D-R), Redlich—
Peterson (RP) and Sips, were used to solve the
adsorption process. The model that fits the
experimental data better i.e. Sips model with the
highest R? value (R? 0.9995), was selected here, as the
nearest fit.

In order to improve the real-time predictive accuracy,
a Random Forest Regressor (RFR) model was
constructed with experimental data and resultant
highest prediction accuracy (Mean Squared Error
(MSE) 0.00009, Root Mean Squared Error (RMSE)
0.00937, R? 0.97513). These results validate the
applicability of the model to predict adsorption of a set
of experimental conditions.

Results show that the highest adsorption yield occurs
under the elevated temperature, optimal pH
environment and longer contact time, while excess
adsorbent dosing causes adsorption saturation effect
and decreases the adsorption enhancement. In this
study, the feasibility of machine learning assisted
adsorption modelling for optimization of the real-time
water treatment processes is shown.
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Introduction

Water contamination from industrial sources involving
mining, battery manufacture and electroplating with lead, is
a serious environmental and public health threat as toxic
effects even at low exposure can occur. Health risks include
neurological deficits, developmental retardation, renal
failure and cardiovascular disease!®. Adsorption is a strong
suit when developing a lead removal system, as it is
intrinsically simple, cheap and adsorbent recyclable. Typical
adsorbents studied are activated carbon, biochar, metal-
organic framework (MOF) and nanomaterials®. Limitations
in adsorption performance due to pH, contact time,
adsorbent dosage and temperature are also discussed.
Despite their time-consumption and their potential static
nature, traditional batch experiments are commonly applied
to study adsorption behavior.

Lead Contamination in Water and Environmental
Consequences: Water pollution with lead (Pb) is an
important environmental and public health problem globally.
Because of its non-degradable and high toxicity, lead is
polluting water resources and creates serious threats to
aquatic environment and the surrounding human population.
Major sources of lead contamination are industrial
discharges, mining, battery assembly, plumbing systems
made of lead piping and improper elimination of electronic
waste'>. Lead may contaminate water bodies by way of
leaching from corroded pipes, industrial discharges and
atmospheric deposition from combustion of fossil fuels.
Because the repeated exposure to lead in drinking water is
known to have serious health consequences even at low
doses, its presence in drinking water is becoming especially
problematic. Lead poisoning leads to cascading effects in
aquatic and earthbound ecosystems. Lead water poisoning
effects are, mainly, presented as follows:

e Impact on Aquatic Life: Lead ions impair the
physiological mechanism of aquatic organisms through
enzyme inactivation and modulation of cellular
metabolism. Bioaccumulation in fish may culminate in
reproductive failure, behavioral alteration, higher
mortality and haemoglobin disaggregation resulting in
reduced oxygen uptake.

¢ Soil and Sediment Contamination: Lead accumulates
as part of sediments and can stay there for centuries and
serves as a hidden form of pollution when returning to
the water body as a result of environmental events.
Contaminated soils with lead negatively affect microbial
diversity and plant growth, thus affecting agricultural
production'®.
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¢ Bioaccumulation and Biomagnification: Lead dorsally
is concentrated through the food chain at various trophic
levels and, as a result, toxicity increases in its predators.
This poses serious risk to birds, mammals and humans
consuming contaminated fishes or agricultural
commodities. Lead's mobility and toxicity are affected by
pH, temperature and dissolved organic matter?.

o Public Health Risks: Lead exposure via drinking water
is one of the most prevalent epidemiologic
manifestations of human lead poisoning and of the
utmost concern in areas of ageing infrastructure.
Persistent subjection is prone to neurological,
cardiovascular and kidney damage. Infants and pregnant
women particularly at risk, for developmental and for
chronic cognitive decline!”.

Water contamination with heavy metals is an ecological and
public health disaster that calls for efficient remediation
measures. Common classical techniques, like chemical
precipitation, ion exchange and membrane filtration, are
widely applied, but the suggested methods are relatively
expensive along with generation of secondary waste and low
throughput at low levels of lead. Adsorption is known as low
cost and environmentally benign. The efficiency is affected
by the parameters such as temperature, pH, contact time and
property of adsorbent.

In order to improve the adsorption performance and to
optimize the process, the machine learning combined with
experimental adsorption, an attractive strategy, is proposed.
This synergism allows for in sifu analysis, modeling and
better decision-making in sustainable water purification.

Existing Methods of Lead Removal and Their
Limitations: Waterborne lead pollution creates a serious
environmental and public health issue because of its toxicity
persistence. Different traditional and modern treatment
techniques have been invented to remove the lead from
contaminated water supplies. Although such methods have
different extents of successful operation, they each represent
method with intrinsic limitations preventing their big scale
use.

e Chemical Precipitation: Chemical precipitation is one
of the most widely used methods for lead removal from
wastewater. It involves adding chemical agents such as
hydroxides, sulfates, carbonates, or sulfides to facilitate
the formation of insoluble lead compounds which can
then be separated through sedimentation or filtration®.

¢ Jon Exchange: Ion exchange is realized through the use
of resin-based materials which exchanges lead ions for
less toxic ions e.g. sodium (Na*) or hydrogen (H") in a
reversible reaction’. This method is effective for
removing lead from both drinking water and industrial
effluents.

e Membrane Filtration (Reverse Osmosis,
Nanofiltration, Ultrafiltration): Membrane filtration
techniques  including reverse  osmosis  (RO),
nanofiltration (NF) and ultrafiltration (UF), use semi-
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permeable membranes to physically separate lead ions
from water based on molecular size and charge.

o Electrocoagulation: Electrocoagulation (EC) employs
an electric current to dissolve metal electrodes (e.g.
aluminium or iron), releasing coagulants that bind with
lead ions to form precipitates that can be removed via
sedimentation or filtration.

e Adsorption (Activated Carbon, Biochar,
Nanomaterials, Zeolites): Adsorption is a widely used
technique where lead ions bind to porous materials such
as activated carbon, biochar, zeolites, or nanomaterials
through physical or chemical interactions?.

e Bioremediation (Microbial and Phytoremediation
Techniques): Bioremediation  involves  using
microorganisms (bacteria, fungi, algae) and plants to
absorb, bioaccumulate, or transform lead into less toxic
forms.

Each lead removal method has advantages and challenges,
necessitating careful selection based on water composition,
cost considerations and environmental impact. Traditional
methods are effective but suffer from high operational costs,
sludge generation and maintenance issues. Adsorption and
bioremediation offer promising eco-friendly alternatives but
require optimization for large-scale applications.

Importance of Adsorption-Based Methods using
Biomass Materials for Lead Removal: Water lead
contamination is an important environmental and public
health concern because of the toxicity and bio-accumulation
of lead. The most widely used physicochemical techniques
for the removal of lead, chemical precipitation, ion exchange
and membrane filtration, are all costly, energy demanding
and produce municipal wastes. Adsorption has found
increasing appeal as an effective and low-gold-cost
alternative, simple to operate with high removal
performance. Specifically, biomass-derived adsorbents that
are synthesized from agricultural and industrial waste
products have also attracted considerable interest as they
offer a range of sustainability, utility and high adsorption
abilities® 3. The types of biomass-based adsorbents for lead
removal are agricultural waste-derived adsorbents, microbes
(such as algae, fungi and bacteria) and biochar-based
adsorbents.

Research Gaps in Biomass Adsorption for Lead
Removal: More and more researches are available for
adsorptive removal of Pb from biomass-derived strategies,
but the result in terms of slow kinetics of adsorption, poor
regeneration ability and different performance according to
the environmental conditions must be considered for the
industrial application. Given field variability and the absence
of information for continuous flow systems as a background,
translation is a barrier. There is a potential application of
machine learning (ML) also in conversion technologies
which can offer high added value, such as high-performance
design of adsorption parameters, deep data analytics or real-
time process control and so on. The algorithms of artificial
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neural networks (ANNSs), support vector machines (SVMs)
and decision tree models have also been used to make
prediction of adsorption capacity, selection of appropriate
biomass materials and optimization of basic parameters i.e.
pH, contact time and temperature.

Biomass-derived adsorbents obtained for lead removal
property from agro-industrial biomass, microbial biomass
and biochar are promising from an economic and
environmental point of view. Nevertheless, chemical
derivatization  and  machine-learning  (ML)-driven
optimization are still required to still enhance performance.
When used together with biomass, functionalized
nanoparticles and mesoporous composites adsorbents are
provided to improve the adsorption performance. ML can
also be used in predictive modeling and real time monitoring
and cost reduction and therefore, would help to reduce the
need for high throughput laboratory tests. The integration of
experimental know-how in ML-driven prediction, therefore,
can result in efficient, green and workable lead removal
water treatment (WLWT) technologies.

The general objective of this work is to implement an ML-
based framework for real-time analysis and optimization of
the lead adsorption behaviour at different temperatures.

When investigating the system, data driven modeling

approaches are applied to predict adsorption behaviour, to

define thermodynamic behaviour and to regulate the process.

e Analyzing Temperature Influence: Temperature
changes on lead adsorption capacity, kinetics and
thermodynamics are compared.

e Developing ML-based Prediction Models: Implement
data driven models for the prediction of adsorption
efficiency based on experimental data.

e Evaluating Adsorption Kinetics and Isotherms:
Empirical models and data supported models are used for
characterization of adsorption mechanisms.

¢ Real-Time Monitoring and Optimization: Develop an
imbalanced learning-based, real-time absorption
efficiency forecasting and process control system.

In this study, an algorithm application-based machine
learning for real-time prediction and temperature-dependent
lead adsorption behaviour analysis and deep optimum is
proposed. The purpose of the current study is to maximize
decision making, performances and scalability of the
adsorption-based aqueous water treatment processes, that
can be applied toward the development of even sustainable
lead-remediation technologies. Results of this work can be
applied to intelligent water treatment systems that include
ML-based decision making to maximize adsorption capacity
and environmental pollution.

In this study, aiming to reverse the separation between the
experimental adsorption performance of removal of lead in
real time application and computational intelligence, this
research aims to remove this gap between experimental
adsorption work and computational intelligence.
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Review of Literature

Contamination of drinking water by lead is a serious
environmental, public health threat and even low-level
exposure is associated with neurologic disease, renal
dysfunction and congenital malformation. Highly effective
lead removal has been a decisive step in promoting water
safety and, in this context, adsorption has been recognized to
be an attractive low-cost removal method, mainly due to its
ease of implementation, high removal efficiency and
material recyclability. Nevertheless, adsorption performance
is influenced by temperature, pH, initial Pb concentration
and adsorbents properties. Old adsorption isotherm
techniques are not valid in predicting in situ properties based
on real-time measurements for dynamic systems. The
combination of machine learning (ML) and the adsorption
process is a promising date for real time prediction,
optimization of adsorption performance and minimization of
the need for conventional laboratory tests, improving the
lead removal efficiency and treatment performance
respectively.

Tchounwou et al'® provided an extensive account of
environmental distribution, human exposure pathways,
toxicity mechanisms and carcinogenic risk of five priority
heavy metals arsenic, cadmium, chromium, lead and
mercury. These metals are the known as systemic toxicants
which exert damaging health effects, including organ
damage and cancer at low exposure levels. An average of
more than 100,000 (and sometimes millions) persons in
Bangladesh/India are chronically exposed to arsenic in
drinking water. There is wicking of lead contamination in
25% of US homes with young child. Babel and Kurniawan?
discussed the potential of several inexpensive adsorbents as
substitutes to activated carbon for the removal of heavy
metal from polluted water.

High adsorption abilities are realized by natural materials
(chitosan, zeolites, clays and industrial by-products - waste
slurry, lignin and red mud). Key findings indicate that
chitosan adsorbs 815 mg/g of Hg?", 273 mg/g of Cr®* and 250
mg/g of Cd* whereas zeolites remove 175 mg/g of Pb* and
137 mg/g of Cd*'. Industrial waste-derived adsorbents
including waste slurry are extremely effective, showing
adsorption capacities up to 1030 mg/g for Pb?" and 560, 640
mg/g for Hg?" and Cr®" respectively. Lignin exhibits the
highest Pb** removal at 1865 mg/g.

Tran et al'! also critically reviewed conflicting findings in
adsorption and pointed the importance of precise measuring,
mathematical modeling and data interpretation. Major
findings demonstrate that adsorption performance should be
expressed with equilibrium adsorption capacity instead of
percentage removal to avoid ambiguity. Zhang et al'* studied
the detection and removal of moderate high concentration of
tetracycline (TC) in aqueous solution using multi-walled
carbon nanotubes (MWCNTs) as adsorbents. The adsorption
efficiency reached 99.8%, demonstrating MWCNTS'
performance. Zhao et al'> used machine learning for the
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prediction of the adsorption capacity of organic molecules
adsorbed on biochar and polymeric resins. Using 1750
adsorption data points of 73 organic substances, the model
performed significantly superior (R?> 0.940 and 0.976
compared to NN-LFER-based models) (R? 0.870 and 0.880
respectively) in predictions on biochar and resin.

Flora et al* also studied the lead (Pb) toxicity and its
biological damage effects in particular with regard to the
involvement of oxidative stress. Subacute/chronic lead
toxicity,  characterized by  persistent  vomiting,
encephalopathy and convulsions and diagnosed based on the
blood lead levels of 40-60 pg/dL. Jaishankar et al® studied
toxicity, mechanisms health effects of heavy metals and
proposed their role in human US environment pollution.
Wuana and Okieimen'? described the cause, chemical,
hazard and remediation soil contaminated environment by
soil contamination.

Phytoremediation alters as an eco-friendly option but
requires long-term monitoring. Technical brief!? described
lead contamination in drinking water and potential health
hazards and the requirement for permanent monitoring and
remediation. According to the World Health Organization
(WHO)'?, lead concentrations should be below 10 pg/L
because exposure has been shown to be associated with
cognitive deficits, especially in children.

Needleman® further described the effects of lead poisoning
on the human health, particularly regarding the neurological,
renal and the hematopoietic system. Chronic exposures also
have been inter-linked to cognitive and behavioral
dysfunction as well as cardiovascular disease even at low
doses. Fu and Wang> estimated numerous methodologies to
remove heavy metal ions from wastewater, focusing on their
efficiency and practical applicability. The adsorption with
activated carbon and bio sorbents is proved effective and the
adsorption capacity which is more than 99% for lead and
copper, is obtained. Barakat® provided a review of recent
method for the treatment of industrial effluents contaminated
with heavy metals that include some novel physicochemical
methods.

Adsorption using newly developed adsorbents and
membrane filtration are two of the most investigated and
applied methods with high capacities of removal. Alyiiz and
Veli' studied the adsorption of nickel and zinc from aqueous
solution on Dowex HCR S/S cation exchange resin. Batch
adsorption experiments were used to show that the
maximum percentages of nickel and zinc adsorption were
obtained at pH 4 and 6 respectively with more than 98%
removal percentages. Kansaraa et al’ discussed different
methods for lead removal from wastewater, particularly
considering adsorption, ion exchange, precipitation and
membrane filtration.

Removal efficiencies have been shown to be higher than
95% for adsorption using activated carbon and bio-sorbents,
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as the result of widespread studies. Highly selective for Pb%*
ions, ion exchange resins like zeolites adsorb Pb**ion at over
150 mg/g. Ngah and Hanafiah® surveyed the application of
chemically functionalized plant waste as an inexpensive
absorbent for the removal of heavy metal ions from
wastewater. Chemically modified plant-based materials,
such as rice husk, sawdust and sugarcane bagasse, have very
improved adsorption capacities in comparison to the
unmodified ones.

The use of nanomaterials, biochar, bio-sorbents or
agricultural waste is proven in recent researches for heavy
metal and dye removal from wastewater. These materials are
very high in adsorption capacity, low in cost and
environmentally acceptable, therefore it is feasible to replace
conventional  treatments.  Operationally, chemically
modified biochar, magnetic nanocomposites and used
adsorbents, all demonstrate elevated adsorption capacity due
to increased surface area and reactivity. However, problems
still exist in the applications at large scale, the long-term
performance and the regeneration capability. There is a need
for future research to further adjust the characteristics of
adsorbents, strengthen recyclability and embed these
materials into an integrated wastewater treatment system to
increase its efficiency and scaling properties to provide
pollution control.

Material and Methods

A real time machine-learning-based predictive system based
on lead adsorption modelling has been described to predict
adsorption at various temperatures. The study reports
adsorption  kinetics, equilibrium determination and
thermodynamics, over a temperature range. Integrated
experimentation with optimized adsorbents and ML models
was utilized to examine the adsorption efficacy and predict
the system performance. In the methodology, data pre-
processing, feature selection and model training are
performed to enhance the performance of the model. In the
current method, a thermodynamically consistent method is
presented for mapping lead adsorption kinetics which in
turn, is used to guide process optimization and increase
removal efficiency.

Adsorbent Preparation and Characterization

Biomass-Based Adsorbents: The current work investigates

rubber seed shells, tamarind pod shells, groundnut shells and

Pistachio shells as low-cost/green adsorbents for removal of

heavy metal(s). These abandoned, agricultural waste

biomass materials which contain a high carbon content, have
high porosity and have a large number of surface functional
groups which are good candidates for adsorption.

o Rubber Seed Shells (RSS): Composed of cellulose (35—
40%, hemicellulose (20-25% and lignin (30-35%,
rubber seed shells lend a stable structure to adsorption.
Their surface can be chemically functionalized in order
to improve binding of heavy metal ion.

e Tamarind Pod Shells (TPS): Highly enriched in
cellulose (40-45% and lignin (25-30% with polar
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functional groups, including carboxyl -COOH) and
hydroxyl -OH). Metal ion interaction capability has been
enhanced.

Groundnut Shells (GS): Groundnut shells are
composed with lignocellulosic basis of cellulose (35—
45%, hemicellulose (20-25% and lignin (30-35% have
50% moisture content, their architecture is inherently
porous and hence highly effective in adsorption
efficiency.

Pistachio Shells (PS): Pistachio shell, being a natural
heterogeneous material composed of 40-50% cellulose
(40-50%, 20-25% hemicellulose (20-25% and 25-30%
lignin (25-30%, possesses a naturally coarse surface that
enhances the adsorption characteristics of the shells.

Adsorbent Preparation: Each biomass material underwent
a systematic preparation process to enhance its adsorption
properties:

Washing and Drying: Raw materials were washed with
distilled water repeatedly to wash out impurities and
oven dried at 105°C for 24 h.

Grinding and Sieving: Dried biomass was milled and
sieved to provide particles of 100—-500 pm.
Carbonization and Activation: Activated carbon was
prepared from the biomass pyrolyzed in 400-700 °C
temperature range in vitro under nitrogen atmosphere in
a Muffle furnace. Chemical activation using H3POg4 or
KOH was performed to increase pore volume and
increase surface area.

Experimental Setup for Lead Adsorption: To explore the
adsorption behavior of lead ions (Pb(Il) at elevated
temperatures, batch adsorption experiments were carried out
at 100°C, 150°C and 200°C at the laboratory level under the
same conditions. The study focused on evaluating the
adsorption efficiency, measuring initial and final lead
concentrations and determining the adsorption capacity of
the prepared adsorbents.

Adsorption Experiment Setup: The adsorption
experiments were performed using 250 mL stoppered
glass bottles, where the intended mass of each adsorbent
was combined with 50 mL of Pb(Il) solution at
predefined temperatures. A thermostatically controlled
water bath shaker was employed to keep the experiment
temperature constant and the process of adsorption
kinetics equal across the experiment. Adsorbate-
adsorbent interaction was maximized by continuously
mixing the solution at a pre-determined rate.

Temperature-Dependent Adsorption Studies: To
compare the impact of temperature on lead adsorption,
experiments were performed at various temperatures. At
100°C (373 K), performance of the early stage of the
temperature effect on adsorption behavior at 150°C (423
K) was evaluated for intermediate thermal effects and
putative structural modifications in the adsorbent and at
200°C (473 K), high-temperature effects increased
diffusion and possible adsorbent deactivation may occur.
Experimental protocols were identical for each
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temperature condition in order to make the experiment

reproducible.

e Measurement of Initial and Final Lead
Concentrations: Before and after, adsorption
absorbance of Pb(II) in the solution was measured by an
Atomic Absorption Spectrophotometer (AAS) or
Inductively Coupled Plasma Optical Emission
Spectroscopy (ICP-OES) in order to achieve accurate
quantification. The steps involved were:

e Initial Concentration (Co) Measurement: Pb(II)
solutions of known concentrations were prepared
and analyzed before adsorption.

o Filtration: After the specified shaking time, the
adsorbent was separated from the solution using a
0.45 pm membrane filter.

e Final Concentration (Ce) Measurement: The
remaining Pb(I) concentration in the supernatant
was determined post-adsorption.

e Adsorption Capacity Calculation: The adsorbent's
adsorption capacity per gram of adsorbent at equilibrium
Q. was determined by using the mass balance equation:

CO_C
Qe=—"—"xV
m

where Q. is Adsorption capacity (mg/g), C, is Initial
Pb(Il) concentration (mg/L), Cc is Equilibrium Pb(II)
concentration (mg/L), V is Volume of Pb(II) solution (L)
and m is Mass of the adsorbent (g).

e Adsorption Efficiency Calculation: The overall
removal efficiency (Refr) of the adsorbent was calculated
using the following equation:

Co — Ce
Co

* 100

Refy =

where Refr is Removal efficiency (%), C, is Initial Pb(II)
concentration (mg/L) and C. is Equilibrium Pb(II)
concentration (mg/L)

e Evaluation of Modified Adsorbents: In order to
improve the adsorption efficiency, a second experiment
was designed to use chemically modified adsorbents. The
adsorbents were prepared by:

e Immersing the raw adsorbents in a potassium
hydroxide (KOH) solution to alter their surface
characteristics.

e Drying of adsorbents at 110°C to lock the
amendments.

e Repeated adsorption efficacy testing under the same
experimental  conditions  with  unmodified
adsorbents.

The modification process was calibrated to maximize
functional group accessibility, porosity and Pb(II) ion
retention efficacy. A number of studies conducted at 100,
150 and 200 °C temperature range revealed the role and
influence of temperature on the efficacy of lead adsorption.

49



Research Journal of Chemistry and Environment

Vol. 30 (1) January (2026)

Adsorption capacity and efficiency were determined by
calibrated equations determined from initial and the ultimate
Pb(II) concentration. In addition, the chemically modified
adsorbents were applied to enhance the heavy metal
removal. These data are informative on the mechanics of
adsorption and provide a road for further studies on
adsorption kinetics and thermodynamics.

Results and Discussion

Lead removal from drinking water is still one of the most
impactful environmental problems regarding toxicity and
stability. Therefore, the present study has conducted a series
of adsorption experiments to compare Pb removal
performance under various conditions. Experimental
parameters analysed were temperature (100°C, 150°C,
200°C), initial lead concentration (10—60 mg/L), contact
time (30—180 min), pH (4-9) and adsorbent dosage (1-6 g).
Effect of thermal activation on adsorption performance has
been explored and role of pH on surface charge interactions
and lead speciation was suggested. Contact time and
adsorbent loading were, furthermore, studied in order to get
understanding of the effect that these parameters have on
adsorption kinetics and capacity. With the systematic
optimization of these parameters, this work assures certain
evidence on developing economic and efficient lead poison
water treatment.

Effect of Temperature in Concentration Vs Adsorption
Efficiency: The data sets reflect the effectiveness of lead
adsorption from aqueous solutions with samples consisting
of rubber seed shells, tamarind pod shells, groundnut shells
and Pistachio shells for different initial lead concentrations
(10-60 mg/L) at three different temperatures 100°C, 150°C

Res. J. Chem. Environ.

and 200°C. The conclusions offer understanding of the
effects of concentration and the temperature on adsorption
efficiency. The adsorption efficiency is typically reduced as
increasing the initial concentration of lead accumulates
among all adsorbate and temperature conditions. This
tendency indicates that with increasing concentration, the
adsorption sites reach their maximum number, below which
further adsorption is limited.

Nevertheless, at lower Pb(II) concentrations, the active
adsorption site availability facilitates the higher Pb(II)
removal capacity. Figure 1 depicts the concentration Vs
adsorption efficiency graph with respect to various
temperatures (100°C, 150°C and 200°C). Adsorption
efficiency is minimum at 100°C applications in all tested
adsorbents. Rubber seed shells demonstrated reduced
adsorption performance e.g. decreased from 79.5% (rubber
seed shells concentration of 10mg/L) to 72.92% (rubber seed
shells concentration of 60mg/L).

Adsorption is significantly improved at 150°C. Rubber seed
shells 84.5% and 82.8% yield at 10 mg/L. and 60 mg/L
respectively, indicating that temperature increase has a
positive effect on adsorption. Efficiency is meanwhile still
satisfactory at 200°C, but slightly declines, suggesting that
thermal energy can be deleterious to adsorption. Rubber seed
shells exhibited the greatest adsorption capacity under all
conditions and thus is the most efficient adsorbent. Tamarind
pod shells showed moderate but slightly lower performance
compared to rubber seed shells while the groundnut shells
showed the lowest performance across all shells for high
lead concentration. Pistachio shell yielded the same
efficiency as tamarind pod shell, however, showed decreased
efficiency for high lead concentrations.

Concentration vs Efficiency

#=—4Groundnut Shells  gr—9i stac

Concentration vs Efficiency

84 —_—

Initial Concentration mg

#—#itubber seed Shel Tamarind Pod Shells

#=—4Groundnut Shells ~ 4==gPistachio Shell

Temperature: 100°C

Temperature: 150°C

Concentration vs Efficiency

Initial Concentration mg/I

@===gCroundnut Shells @uuugPistachio Shells

40

Temperature: 200°C

Figure 1: Concentration Vs Adsorption Efficiency graph with respect to various temperature
(100°C, 150°C and 200°C)
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The optimal adsorption temperature was 150°C (the lower
Pb+ concentrations led to better adsorption due to more
active sites exposed). Rubber seed shells are demonstrated
as a possible lead removal material in those conditions.

Effect of Temperature in Adsorbent Dosage Vs
Adsorption Efficiency: The adsorption performance of
several bio-based adsorbents such as rubber seed shells,
tamarind pod shells, groundnut shell and Pistachio shells
have been investigated in terms of the initial concentration
of lead in an aqueous solution at 100°C, 150°C and 200°C.
The observations from the datasets are discussed further.
Adsorption efficiency decreases with increasing initial lead
concentration at all temperatures. Under low concentration
(10 - 30 mg/L), adsorption efficiency is highest and between
high concentrations 40 - 60 mg/L, it decreases. The
performance decrease with higher concentration is more
significant for Pistachio shells and groundnut shells than
rubber seed shells and tamarind pod shells.

Figure 2 shows the adsorption dosage Vs adsorption
efficiency plot as a function of various temperatures.
Adsorption efficiency is moderate at 100°C and reached
83% and 79% respectively for rubber seed shells and
tamarind pod shells of 10 mg/L. Efficiency increases at
150°C, rubber seed shells yielding 84.5% showing increased
adsorption kinetics. At 200°C, Pistachio shells increase from
65.4% to 77.7%, delivering that the higher temperatures
favor stronger adsorbate-adsorbent interactions because of
the increased molecular agitation and diffusion. Rubber seed
shells are always the best adsorbate at any condition and
tamarind pod shells are the next best adsorbate, with slightly
compromised performance at higher concentrations.

Res. J. Chem. Environ.

Groundnut and Pistachio shells exhibit significant
adsorption efficiencies, but diverge sharply at the higher
dilutions. Adsorption is endothermic and heat strengthens
the binding of lead ion to the adsorption site and also to that
of the pores. However, excessive temperatures beyond
200°C may degrade adsorbents. Improvement of
temperature as well as lead concentration can lead to an
improved performance of bio-based adsorbents, namely
rubber seed shells and tamarind pod shells in water
decontaminating processes. The performance ranking is:

Rubber Seed Shells > Tamarind Pod Shells > Groundnut
Shells > Pistachio Shells.

Effect of Temperature in pH Vs Adsorption Efficiency:
The three data sets presented describe the performance of the
various adsorbents (Rubber Seed Shells, Tamarind Pod
Shells, Groundnut Shells and Pistachio Shells) at different
adsorbent dosages in terms of adsorption performance. The
data are all measurements of 100°C, 150°C and 200°C. The
application of increasing adsorbent dosage result in higher
adsorption efficiency in any temperature conditions. Rubber
seed shells at 100°C have higher efficiency from 79.5% at 1
g to 82.9% at 6 g, while at 200°C, efficiency is from 71.43%
at 1 gto 82.5% at 6 g. This trend is reproducible across all
adsorbents, denoting that increased doses yield a larger
number of active sites for lead ion adsorption. Adsorption is
decreased at higher temperatures (200 °C), as compared to
100 °C and 150 °C and low adsorbent doses, which implies
while modest temperature increases might elevate molecular
interactions. Higher temperature levels could enhance
desorption or weaker binding.
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Figure 2: Adsorption dosage Vs Adsorption Efficiency graph with respect to various temperature
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When compared with all tested adsorbents, rubber seed
shells showed the maximum adsorption capacity, suggesting
a greater surface area with stronger chemical binding with
lead ions. Groundnut and Pistachio shells exhibited lower
adsorption but nevertheless the adsorption could be
enhanced by increasing adsorbent amount. Nevertheless, as
the concentration of adsorbent material further rises, the
efficiency gain decreases because adsorption sites become
saturated. Figure 3 depicts the pH Vs adsorption efficiency
graph with respect to various temperatures (100°C, 150°C
and 200°C).

Lead adsorptive efficiency is at the maximum for the rubber
seed shells (RSS) as a function of pH 6-7 with yields of
83.7% at 100°C and 84.3% at 150°C. Efficiency decreases
to 68.17% and 72% at pH 4 and 9 respectively, when it is
utilized at 200°C due to adverse conditions. Competitive loss
in the adsorption behaviour due to hydrogen ions in acidic
environment and lead ion precipitation forming hydroxides
in alkaline environments are limiting factors of the
adsorption processes. Higher adsorbent dosages enhance
effectiveness until the maximum is attained, beyond which
no further benefits are accrued. Increased temperatures can
trigger desorption, further reducing the adsorption
efficiency. However, due to these factors, solid performance
is consistently shown in RSS and it is a potential material for
the removal of Pb from aqueous solution.

Effect of Temperature in Contact Time Vs Adsorption
Efficiency: The results indicate that lead adsorption
efficiency rises as the concentration of Pb ions increases at
all temperatures (100°C, 150°C, 200°C) until reaching a
saturation point when subsequent adsorption can proceed in
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a stable fashion or it slightly decreases. Higher temperature
(200 °C) better accelerates adsorption due to stronger
molecular kinetic energy that enables the adsorption of lead
ion to the adsorbent surface more efficiently. Rubber seed
shells are demonstrated to always perform better in
adsorption at any temperature, indicating the good surface
area as well as adsorption capacity. Tamarind pod shell and
groundnut shells show moderate efficiency behavior and
Pistachio shell shows the lowest efficiency, possibly due to
the reduced number of active adsorption sites. The
adsorption efficiency is also enhanced by prolonged contact
time to equilibrium, after which further increase in contact
time of the materials has no effect on their adsorption
efficiency. At 200°C, adsorption occurs faster compared to
lower temperatures. Rubber seed shells are fully exploited of
contact time and contact temperature, demonstrating rapid
adsorption kinetics. Contact time Vs adsorption efficiency
diagram has been presented as a function of the different
temperatures in figure 4.

Tamarind pod shells and groundnut shells have high
adsorption properties, whereas Pistachio shells show low
adsorption for the reason that there are not enough active
sites. Rubber seed shells exhibit a high adsorption capacity
for Pb removal which makes them the most efficient
adsorbent. Adsorption performance typically increases with
rising temperature by promoting the molecular interactions
and diffusion. The process is endothermic and 100°C is an
optimal working temperature for adsorption -efficacy.
Moreover, excessively high temperatures may trigger
desorption. Adsorption increases in proportion to the
increase in lead concentrations as long as there are enough
active sites.
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Figure 3: pH Vs Adsorption Efficiency graph with respect to various temperatures (100°C, 150°C and 200°C)
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Contact Time vs Efficiency Contact Time vs Efficiency
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Figure 4: Contact time (min) Vs Adsorption Efficiency graph with respect to various temperatures
(100°C, 150°C and 200°C)

Long-time contact enhances adsorption until equilibrium is
reached. As a result, the study introduces the role of bio-
derived adsorption materials for lead removal and the
relevant combined effects of concentration, temperature and
contact time on adsorption performance.

Adsorption Isotherm Modelling: Isotherm models of
adsorption describe the amount adsorbed of an adsorbate
onto adsorbent surface at equilibrium. These models are
used to facilitate understanding of adsorption mechanism,
adsorption capacity assessment and adsorption system
optimization. The models Dubinin-Radushkevich (D-R),
Redlich-Peterson and Sips are frequently used for the
adsorptive (heterogeneous surface) characterization.

Dubinin-Radushkevich (D-R) Isotherm Model: The
Dubinin-Radushkevich (D-R) model is a basic empirical
equation that is mainly used to explain the adsorption of
microporous materials. As opposed to Langmuir and
Freundlich models, which implicitly assume preferential
interactions, the D-R model takes adsorption in pores. The
developed model with respect to the experimental data was
plotted and is depicted in figure 5. The mathematical
representation of the model would be given as follows:

de = qm exp(—Be?)

where . is equilibrium adsorption capacity (mg/g), qm is
maximum adsorption capacity (mg/g), B is activity
coefficient related to adsorption energy (mol?/J?) and € =
Polanyi potential.

1
e=RTln(1+—)

Ce

https://doi.org/10.25303/301rjce045057

The baseline setting employs a quadratic formula to relate
the adsorbate equilibrium concentration, Ce, to the surface
and internal temperatures of the adsorbent, X and I
respectively in Kelvin units, as well as the universal gas
constant (R 8.314 J/mol K) and absolute temperature T in
Kelvins.

The model does not assume a homogeneous surface or
monolayer adsorption. It is more appropriate for adsorption
onto porous materials where the surface energy is non-
uniform. The adsorption energy (B) can be used to determine
the adsorption mechanism. When mean adsorption energy (E
= 1A2B) below 8 kJ/mol is obtained, it indicates
physisorption, while when mean adsorption energy (E) is
above 16 kJ/mol, it indicates chemisorption.

Redlich-Peterson Isotherm Model: The Redlich-Peterson
isotherm model is a hybrid adsorption model that combines
the features of both Langmuir and Freundlich isotherms. It
proposes an empirical parameter which enables to switch
between Langmuir (at high concentration) and Freundlich
(at low concentration) behavior and is thus more versatile for
many adsorption systems. The developed Redlich-Peterson
model was plotted with experimental data as depicted in
figure 6. The mathematical representation of the model
would be given as follows:

KC,

Te=T+ac?

where e = equilibrium adsorption capacity (mg/g), K is
Redlich-Peterson constant (L/g), a is isotherm constant
(L/mg) and g = dimensionless constant, approximately
between 0 and 1.
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When g=1, the model becomes the Langmuir isotherm,
which gives monolayer adsorption. When g<1, it behaves as
the Freundlich isotherm model, indicating surface
heterogeneity. It offers a better approximation for
experimental data, for which both of the Langmuir and
Freundlich model cannot be applied separately.

Sips Isotherm Model: The Sips isotherm (or Langmuir-
Freundlich isotherm) is another hybrid model to fit the
adsorption on heterogeneous sites. It is of particular value
when the adsorption sites exhibit different affinities to the
adsorbate. The model behaves as the Freundlich isotherm at
low concentrations and the Langmuir isotherm at high
concentrations respectively and thus mitigates the
drawbacks of both. The developed Sips model was plotted
with experimental data depicted in figure 7.

Mathematically, the model would be presented as follows:

_ K€ ",
T =1 a,cn
where . is equilibrium adsorption capacity (mg/g), Ks is
Sips equilibrium constant (L/g), as is Sips isotherm constant
(L/mg) and n = heterogeneity factor (dimensionless).

If n = 1, the Sips model reduces to the Langmuir model
which describes homogenous adsorption. When n<1, it is
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equivalent to the Freundlich model, representing surface
heterogeneity. The model avoids unphysical infinite
adsorption capacities for the high concentrations, as is
typical of the Freundlich isotherm. Versatility tools are
considered the Dubinin-Radushkevich (D-R), Redlich-
Peterson and the Sips isotherm models for the
characterization of the adsorption onto diverse surfaces. The
D-R model is suitable for microporous materials and it is
helpful to separate physisorption from chemisorption. The
Redlich-Peterson equation is a hybrid, transferring between
Langmuir and Freundlich behavior. The Sips model is
especially suitable for adsorption on heterogeneous surfaces
over a range of affinities.

Considering efficacy, the D-R model scores an R-squared
value of 0.8643, the Redlich-Peterson model 0.9953 and the
Sips model 0.9995. Because of its high performance, the
Sips model was selected to be used in the feature engineering
process of the machine learning model.

Table 1
Performance Metrics of Random Forest Regressor

Dubinin-Radushkevich (DR) Model Fit

In(ge) [marg]

100 200 300

Polanyi Potential (€) [Jymol]

Figure 5: Dubinin - Radushkevich Adsorption Isotherm model
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Figure 6: Redlich-Peterson Adsorption Isotherm model
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Performance Metrics Values
Root Mean Squared Error (RMSE) 0.00937
Mean Squared Error (MSE) 0.0009
R-Squared 0.97513
1”” i
t”/'}
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Sips Isotherm Model Fit
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Figure 7: Sips Adsorption Isotherm Model
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Figure 9: Random Forest regressor model

Machine learning modelling

Adsorption is one of the main capabilities used for
wastewater treating, pollutant elimination and material
separation. Accurate measurement of adsorption efficiency
is of direct practical utility in the optimization of a process,
yet, in a conventional experimental approach, much time can
be wasted in the experiment. Computationally efficient data
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driven prediction would be provided by the ML models.
Adsorption phenomena on surface heterogeneous systems
have been accurately described in terms of the experimental
data through the use of the Sips isotherm model (i.e. the
hybrid Langmuir/Freundlich isotherm). They are connected
to prediction models with the selected variables (initial
adsorbate concentration, pH and contact time, adsorbent
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dose and temperature). Figure 8 showcases the ML
prediction model development.

Such ML-based models are also valuable for reducing the
huge experimental work, on-line, in real time, control and
optimization of the adsorption process. The reason is that it
is possible to delineate adsorption behaviour, as that is the
key reason why it is feasible to go from the laboratory scale
to the industrial scale, providing them in a reproducible way
and in the case, to determine and make operating decisions
based on them. The incorporation of real-time simulation
prediction model into the system allows real-time
monitoring and dynamic control of process parameters to
obtain the optimal system performance for industrial or
environmental use. Figure 9 depicts the model fit of Random
forest regressor mode developed. Table 1 showcases the
performance metrics of Random forest regressor model
developed.

Future Scope

The research on adsorption-based water treatment is
expanding to the combination of the advanced ML
algorithms and the real-time monitoring devices for
achieving the optimized performance of prediction.
Accompanying studies on a broader set of sorbents i.e.
nanomaterials, bio-adsorbents and composites have allowed
a greater insight to be developed into the adsorption
behaviour under changing environmental conditions. The
IoT-based real-time monitoring systems will enable in-line
process engineering and hence efficient adsorption in the
treatment plants of industrial wastewater discharge streams.

Hybridized Deep learning models with LSTM and
convolutional neural networks (CNNs) could be used to
predict accuracy in realistic modeling of the intricate
adsorption dynamics. In the end, the translatability of
laboratory-based work-world environments to operational
work-world environments will substantially rely on the
validation of these models in operational environments.

Conclusion

This research work examines the adsorption efficiency of
lead removal process from aqueous solutions across
different temperature conditions using machine learning-
based predictive modeling. According to experimental
results, adsorption capacity tended to be dependent strongly
on temperature. Generally speaking, higher temperature
would promote adsorption and thus an endothermic
adsorption mechanism is reasonable. Efficiency trends were
explained by initial concentration, pH, contact time and
adsorbent dose. The analysis has been performed by using a
Random Forest Regressor model that has afforded an R?
value (0.97513), the Root Mean Squared Error (RMSE)
(0.00937) and the Mean Squared Error (MSE) (0.00009).

These results show how machine learning can be harnessed

toward a reliable prediction of an adsorption efficiency using
experimental variables. Isotherm model of Sips fitted well

https://doi.org/10.25303/301rjce045057
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the non-linearity of adsorption kinetics using a concentration
range and using deposition conditions, that permit the use of
the model for adsorption modeling of various aqueous
systems. Reported results demonstrate the potential of using
machine learning to better implement the adsorption
processes by offering the possibility to automate and
optimize adsorption operation parameters in real time.

The use of machine learning models in adsorption studies is
of great importance to the industry and the environment,
such as industrial water treatment, real-time monitoring in
adsorption-based purification, optimization of adsorbent
utilization, automated smart systems etc.
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